Simultaneous Approximation of a Function and Its Derivatives

KIM-PIN LIM

Department of Mathematics, University of Malaya, Kuala Lumpur, Malaysia Communicated by E. W. Cheney Received June 12, 1975

1. INTRODUCTION

Let \mathbb{P}_0 be the set of all polynomials of the form $\sum_{i=0}^n a_i x^i$ with $a_0 = c$ and $n \ge r+1$, for some integer $r \ge 1$, where c is a nonzero constant. The polynomial $Q_0 \in \mathbb{P}_0$ is said to be a best approximation to zero, if

$$\max(\|Q_0\|, \|D^rQ_0\|) = \inf_{Q \in \mathbb{P}_0} \max(\|Q\|, \|D^rQ\|),$$

where $||Q|| = (\int_0^t |Q(x)|^p dx)^{1/p}$, $p \ge 1$, and $D^rQ(x)$ is the *r*th derivative of Q(x). It is natural to ask: Is $||Q_0||$ equal to $||D^rQ_0||$? In [2] it was shown that $\int_{-1}^{1} |Q_0(x)|^p dx = \int_{-1}^{1} |D^rQ_0(x)|^p dx$, for p = 2 and c = 1. In this note we will show that, in fact, $||Q_0|| = ||D^rQ_0||$, for $p \ge 1$.

2. GENERAL RESULTS

It is clear that we have the following trivial result.

LEMMA. Let \mathbb{P}_0 be defined as above. If the polynomial $Q_0(x) \in \mathbb{P}_0$ is a best approximation to zero, then, for $p \ge 1$,

$$\|Q_0\| \ge \|D^r Q_0\|. \tag{1}$$

Using a technique similar to that in [2], we can show that equality in (1) is actually attained.

THEOREM 1. Let \mathbb{P}_0 be defined as above. If the polynomial $Q_0(x) \in \mathbb{P}_0$ is a best approximation to zero, then

$$\|Q_0\| = \|D^rQ_0\|$$
 for $1 \leqslant p < \infty$.

Proof. Since $||Q_0|| \ge ||D^rQ_0||$, we need to show that $||Q_0|| > ||D^rQ_0||$ is impossible.

346

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Suppose then that this inequality holds. Write $Q_0(x) = c - R(x)$, where $R(x) \in M$ and $M = \text{span}[x, ..., x^n]$. Then R(x) is a best approximation to c from M with respect to $\|\cdot\|$ and hence we have

$$\int_0^1 x^k \frac{|Q_0(x)|^{p-1}}{\|Q_0\|^{p-1}} \operatorname{sgn} Q_0(x) \, dx = 0 \quad \text{for} \quad k = 1, ..., n.$$
 (2)

Then $Q_0(x)$ must change sign at least *n* times. Since $Q_0(x)$ is a polynomial of degree $\leq n$, $Q_0(x)$ has *n* simple roots in (0, 1], say $x_1, ..., x_n$. By Rolle's theorem, $DQ_0(x)$ vanishes at least once between any two zeros of $Q_0(x)$ and thus vanishes in at least n-1 points. Continuing this argument and the fact that $D^rQ_0(x)$ is a polynomial of degree $\leq (n-r)$, we see that $D^rQ_0(x)$ has (n-r) simple roots in (0, 1), say $x_{r_1}, ..., x_{r_{n-r}}$. Obviously $x_1 < x_{r_1}, ..., x_{n-r} < x_{r_{n-r}}$. Moreover, we have

$$|c|/|a_n| = x_1 \cdot x_2 \cdot \cdots \cdot x_n$$

and

$$\left|\frac{r!\,a_r}{n(n-1)\cdots(n-r+1)\,a_n}\right|=x_{r_1}\cdots x_{r_{n-r}},$$

so

$$|r! a_r| = n(n-1) \cdots (n-r+1) |a_n| x_{r_1} \cdots x_{r_{n-r}}$$

= $n(n-1) \cdots (n-r+1) \frac{x_{r_1} \cdots x_{r_{n-r}} |c|}{x_1 \cdots x_n}$
> $n(n-1) \cdots (n-r+1) \left(\frac{|c|}{x_{n-r+1} \cdots x_n}\right)$.

Hence

$$(1/|c|) | D^{r}Q_{0}(0)| = r! |a_{r}|/|c|$$

> $n(n-1) \cdots (n-r+1) \left(\frac{1}{x_{n-r+1} \cdots x_{n}}\right) > 1.$

From (2), we have

$$\int_{0}^{1} \left(D^{r} Q_{0}(0) Q_{0}(x) - c D^{r} Q_{0}(x) \right) \frac{|Q_{0}(x)|^{p-1}}{||Q_{0}||^{p-1}} \operatorname{sgn} Q_{0}(x) dx = 0.$$
(3)

Then, using the Hölder's inequality and (3), we obtain

$$\begin{aligned} \left| \frac{1}{c} \right| | D^{r} Q_{0}(0)| \| Q_{0} \| &= \left| \int_{0}^{1} D^{r} Q_{0}(x) \frac{| Q_{0}(x) |^{p-1}}{\| Q_{0} \|^{p-1}} \operatorname{sgn} Q_{0}(x) dx \right| \\ &\leq \| D^{r} Q_{0} \| \left(\int_{0}^{1} \frac{| Q_{0}(x) |^{(p-1)q}}{\| Q_{0} \|^{(p-1)q}} dx \right)^{1/q} = \| D^{r} Q_{0} \|. \end{aligned}$$

As $|D^{r}Q_{0}(0)|/|c| > 1$, we would have

$$\|D^{r}Q_{0}\| > \|Q_{0}\|.$$

This contradicts the assumption, which completes the proof of the theorem.

THEOREM 2. The polynomial $Q_0(x)$ of Theorem 1 does not have zeros of multiplicity r in (0, 1), for 1 .

Proof. Suppose there exists $x_0 \in (0, 1)$ such that $D^i Q_0(x_0) = 0$ for i = 0, 1, ..., r - 1. Then, using the Hölder's inequality, we obtain

$$\int_{0}^{1} |Q_{0}(x)|^{p} dx = \int_{0}^{1} \left| \int_{x_{0}}^{x} DQ_{0}(t) dt \right|^{p} dx$$

$$\leq \int_{0}^{1} \left(\left(\int_{x_{0}}^{x} |DQ_{0}(t)|^{p} dt \right)^{1/p} \cdot |x - x_{0}|^{1/q} \right)^{p} dx$$

$$< \int_{0}^{1} |x - x_{0}|^{p/q} dx \cdot \int_{0}^{1} |DQ_{0}(x)|^{p} dx$$

$$\leq (1/p) \int_{0}^{1} |DQ_{0}(x)|^{p} dx.$$

Similarly, we have

$$\int_0^1 |D^{i-1}Q_0(x)|^p dx < (1/p) \int_0^1 |D^iQ_0(x)|^p dx \quad \text{for} \quad i = 2, 3, ..., r.$$

Therefore

$$\int_0^1 |Q_0(x)|^p \, dx < (1/p^r) \int_0^1 |D^r Q_0(x)|^p \, dx.$$

Since $Q_0(x)$ is a best approximation, this contradicts the equality of Theorem 1, which proves the theorem.

Finally, by virtue of Theorem 1 and one of the results in [1], we have the following Characterization Theorem.

THEOREM 3. The polynomial $Q_0(x) \in \mathbb{P}_0$ is a best approximation to zero if and only if there exist positive numbers λ , μ such that $\lambda + \mu = 1$,

$$\int_0^1 x^k \frac{|Q_0(x)|^{p-1}}{\|Q_0\|^{p-1}} \operatorname{sgn} Q_0(x) \, dx = 0 \quad \text{for} \quad k = 1, 2, ..., r-1,$$

and

$$\lambda \int_0^1 x^k \frac{|Q_0(x)|^{p-1}}{\|Q_0\|^{p-1}} \operatorname{sgn} Q_0(x) \, dx + \mu k \times \cdots \times (k-r+1) \\ \times \int_0^1 x^{k-r} \frac{|D^r Q_0(x)|^{p-1}}{\|D^r Q_0\|^{p-1}} \operatorname{sgn} D^r Q_0(x) \, dx = 0 \quad \text{for} \quad k = r, r+1, ..., n.$$

SIMULTANEOUS APPROXIMATION

ACKNOWLEDGMENT

I am indebted to the referee for his valuable suggestions.

References

- 1. K.-P. LIM, Simultaneous approximation of compact sets by elements of convex sets in normed linear spaces, J. Approximation Theory 12 (1974), 332-351.
- 2. A. MEIR AND A. SHARMA, Simultaneous approximation of a function and its derivatives, SIAM J. Numer. Anal. 3 (1966), 553-563.