Simultaneous Approximation of a Function and Its Derivatives

Kim-Pin Lim
Department of Mathematics, University of Malaya, Kuala Lumpur, Malaysia

Communicated by E. W. Cheney
Received June 12, 1975

1. Introduction

Let \mathbb{P}_{0} be the set of all polynomials of the form $\sum_{i=0}^{n} a_{i} x^{i}$ with $a_{0}=c$ and $n \geqslant r+1$, for some integer $r \geqslant 1$, where c is a nonzero constant. The polynomial $Q_{0} \in \mathbb{P}_{0}$ is said to be a best approximation to zero, if

$$
\max \left(\left\|Q_{0}\right\|,\left\|D^{r} Q_{0}\right\|\right)=\operatorname{lnf}_{O \in \mathbb{P}_{0}} \max \left(\|Q\|,\left\|D^{r} Q\right\|\right)
$$

where $\|Q\|=\left(\int_{0}^{t}|Q(x)|^{p} d x\right)^{1 / p}, p \geqslant 1$, and $D^{r} Q(x)$ is the r th derivative of $Q(x)$. It is natural to ask: Is $\left\|Q_{0}\right\|$ equal to $\left\|D^{r} Q_{0}\right\|$? In [2] it was shown that $\int_{-1}^{1}\left|Q_{0}(x)\right|^{p} d x=\int_{-1}^{1}\left|D^{r} Q_{0}(x)\right|^{p} d x$, for $p=2$ and $c=1$. In this note we will show that, in fact, $\left\|Q_{0}\right\|=\left\|D^{r} Q_{0}\right\|$, for $p \geqslant 1$.

2. General Results

It is clear that we have the following trivial result.

Lemma. Let \mathbb{P}_{0} be defined as above. If the polynomial $Q_{0}(x) \in \mathbb{P}_{0}$ is a best approximation to zero, then, for $p \geqslant 1$,

$$
\begin{equation*}
\left\|Q_{0}\right\| \geqslant\left\|D^{r} Q_{0}\right\| . \tag{1}
\end{equation*}
$$

Using a technique similar to that in [2], we can show that equality in (1) is actually attained.

Theorem 1. Let \mathbb{P}_{0} be defined as above. If the polynomial $Q_{0}(x) \in \mathbb{P}_{0}$ is a best approximation to zero, then

$$
\left\|Q_{\mathbf{0}}\right\|=\left\|D^{r} Q_{0}\right\| \quad \text { for } \quad 1 \leqslant p<\infty
$$

Proof. Since $\left\|Q_{0}\right\| \geqslant\left\|D^{r} Q_{0}\right\|$, we need to show that $\left\|Q_{0}\right\|>\left\|D^{r} Q_{0}\right\|$ is impossible.

Suppose then that this inequality holds. Write $Q_{0}(x)=c-R(x)$, where $R(x) \in M$ and $M=\operatorname{span}\left[x, \ldots, x^{n}\right]$. Then $R(x)$ is a best approximation to c from M with respect to $\|\cdot\|$ and hence we have

$$
\begin{equation*}
\int_{0}^{1} x^{k} \frac{\left|Q_{0}(x)\right|^{p-1}}{\left\|Q_{0}\right\|^{p-1}} \operatorname{sgn} Q_{0}(x) d x=0 \quad \text { for } \quad k=1, \ldots, n \tag{2}
\end{equation*}
$$

Then $Q_{0}(x)$ must change sign at least n times. Since $Q_{0}(x)$ is a polynomial of degree $\leqslant n, Q_{0}(x)$ has n simple roots in (0,1], say x_{1}, \ldots, x_{n}. By Rolle's theorem, $D Q_{0}(x)$ vanishes at least once between any two zeros of $Q_{0}(x)$ and thus vanishes in at least $n-1$ points. Continuing this argument and the fact that $D^{r} Q_{0}(x)$ is a polynomial of degree $\leqslant(n-r)$, we see that $D^{r} Q_{0}(x)$ has ($n-r$) simple roots in (0,1), say $x_{r_{1}}, \ldots, x_{r_{n-r}}$. Obviously $x_{1}<x_{r_{1}}, \ldots$, $x_{n-r}<x_{r_{n-r}}$. Moreover, we have

$$
|c| /\left|a_{n}\right|=x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}
$$

and

$$
\left|\frac{r!a_{r}}{n(n-1) \cdots(n-r+1) a_{n}}\right|=x_{r_{1}} \cdots x_{r_{n-r}},
$$

so

$$
\begin{aligned}
\left|r!a_{r}\right| & =n(n-1) \cdots(n-r+1)\left|a_{n}\right| x_{r_{1}} \cdots x_{r_{n-r}} \\
& =n(n-1) \cdots(n-r+1) \frac{x_{r_{1}} \cdots x_{r_{n-r}}|c|}{x_{1} \cdots x_{n}} \\
& >n(n-1) \cdots(n-r+1)\left(\frac{|c|}{x_{n-r+1} \cdots x_{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
(1 /|c|)\left|D^{r} Q_{0}(0)\right| & =r!\left|a_{r}\right| /|c| \\
& >n(n-1) \cdots(n-r+1)\left(\frac{1}{x_{n-r+1} \cdots x_{n}}\right)>1 .
\end{aligned}
$$

From (2), we have

$$
\begin{equation*}
\int_{0}^{1}\left(D^{r} Q_{0}(0) Q_{0}(x)-c D^{r} Q_{0}(x)\right) \frac{\left.Q_{0}(x)\right|^{p-1}}{\left\|Q_{0}\right\|^{p-1}} \operatorname{sgn} Q_{0}(x) d x=0 . \tag{3}
\end{equation*}
$$

Then, using the Hölder's inequality and (3), we obtain

$$
\begin{aligned}
\left|\frac{1}{c}\right|\left|D^{r} Q_{0}(0)\right|\left\|Q_{0}\right\| & =\left|\int_{0}^{1} D^{r} Q_{0}(x) \frac{\left|Q_{0}(x)\right|^{p-1}}{\left\|Q_{0}\right\|^{p-1}} \operatorname{sgn} Q_{0}(x) d x\right| \\
& \leqslant\left\|D^{r} Q_{0}\right\|\left(\int_{0}^{1} \frac{\left|Q_{0}(x)\right|^{(p-1) q}}{\left\|Q_{0}\right\|^{(p-1) q}} d x\right)^{1 / q}=\left\|D^{r} Q_{0}\right\| .
\end{aligned}
$$

As $\left|D^{r} Q_{0}(0)\right| /|c|>1$, we would have

$$
\left\|D^{r} Q_{0}\right\|>\left\|Q_{0}\right\|
$$

This contradicts the assumption, which completes the proof of the theorem.
Theorem 2. The polynomial $Q_{0}(x)$ of Theorem 1 does not have zeros of multiplicity r in $(0,1)$, for $1<p<\infty$.

Proof. Suppose there exists $x_{0} \in(0,1)$ such that $D^{i} Q_{0}\left(x_{0}\right)=0$ for $i=0,1, \ldots, r-1$. Then, using the Hölder's inequality, we obtain

$$
\begin{aligned}
\int_{0}^{1}\left|Q_{0}(x)\right|^{p} d x & =\int_{0}^{1}\left|\int_{x_{0}}^{x} D Q_{0}(t) d t\right|^{p} d x \\
& \leqslant \int_{0}^{1}\left(\left(\int_{x_{0}}^{x}\left|D Q_{0}(t)\right|^{p} d t\right)^{1 / p} \cdot\left|x-x_{0}\right|^{1 / q}\right)^{p} d x \\
& <\int_{0}^{1}\left|x-x_{0}\right|^{p / q} d x \cdot \int_{0}^{1}\left|D Q_{0}(x)\right|^{p} d x \\
& \leqslant(1 / p) \int_{0}^{1}\left|D Q_{0}(x)\right|^{p} d x
\end{aligned}
$$

Similarly, we have

$$
\int_{0}^{1}\left|D^{i-1} Q_{0}(x)\right|^{p} d x<(1 / p) \int_{0}^{1}\left|D^{i} Q_{0}(x)\right|^{p} d x \quad \text { for } \quad i=2,3, \ldots, r .
$$

Therefore

$$
\int_{0}^{1}\left|Q_{0}(x)\right|^{p} d x<\left(1 / p^{r}\right) \int_{0}^{1}\left|D^{r} Q_{0}(x)\right|^{p} d x
$$

Since $Q_{0}(x)$ is a best approximation, this contradicts the equality of Theorem 1, which proves the theorem.

Finally, by virtue of Theorem 1 and one of the results in [1], we have the following Characterization Theorem.

Theorem 3. The polynomial $Q_{0}(x) \in \mathbb{P}_{0}$ is a best approximation to zero if and only if there exist positive numbers λ, μ such that $\lambda+\mu=1$,

$$
\int_{0}^{1} x^{k} \frac{\left|Q_{0}(x)\right|^{p-1}}{\left\|Q_{0}\right\|^{p-1}} \operatorname{sgn} Q_{0}(x) d x=0 \quad \text { for } \quad k=1,2, \ldots, r-1
$$

and

$$
\begin{aligned}
& \lambda \int_{0}^{1} x^{k} \frac{\left|Q_{0}(x)\right|^{p-1}}{\left\|Q_{0}\right\|^{p-1}} \operatorname{sgn} Q_{0}(x) d x+\mu k \times \cdots \times(k-r+1) \\
& \quad \times \int_{0}^{1} x^{k-r} \frac{\left|D^{r} Q_{0}(x)\right|^{p-1}}{\left\|D^{r} Q_{0}\right\|^{p-1}} \operatorname{sgn} D^{r} Q_{0}(x) d x=0 \quad \text { for } \quad k=r, r+1, \ldots, n .
\end{aligned}
$$

Acknowledgment

I am indebted to the referee for his valuable suggestions.

References

1. K.-P. Lim, Simultaneous approximation of compact sets by elements of convex sets in normed linear spaces, J. Approximation Theory 12 (1974), 332-351.
2. A. Meir and A. Sharma, Simultaneous approximation of a function and its derivatives, SIAM J. Numer. Anal. 3 (1966), 553-563.
