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1. INTRODUCTION

Let 1P0 be the set of all polynomials of the form L:=o aixi with ao = c and
n ~ r + 1, for some integer r ~ 1, where c is a nonzero constant. The
polynomial Qo E IP0 is said to be a best approximation to zero, if

max(ll Qo II, II DrQo II) = Inf max(11 Q II, II DrQ ID,
QE\PlO

where II Q II = (f~ I Q(x)IP dx)l/ P, P ~ 1, and DrQ(x) is the rth derivative of
Q(x). It is natural to ask: Is II Qo II equal to II DrQo II ? In [2] it was shown that
J~l I Qo(x)jP dx = f~l IDrQo(x)jP dx, for p = 2 and c = 1. In this note
we will show that, in fact, II Qo II = II DrQo II, for p ~ 1.

2. GENERAL RESULTS

It is clear that we have the following trivial result.

LEMMA. Let 1P0 be defined as above. If the polynomial Qo(x) E 1P0 is a best
approximation to zero, then, for p ~ 1,

(1)

Using a technique similar to that in [2], we can show that equality in (1)
is actually attained.

THEOREM 1. Let 1P0 be defined as above. If the polynomial Qo(x) E 1P0 is a
best approximation to zero, then

II Qo II = II DrQo II for 1 < p < 00.

Proof Since II Qo II ~ II DrQo II, we need to show that II Qo II > II DrQo II
is impossible.
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(2)for k = 1,... , n.

Suppose then that this inequality holds. Write Qo(x) = c - R(x), where
R(x) E M and M = span[x, ... , xn ]. Then R(x) is a best approximation to c
from M with respect to [I . II and hence we have

fl k I Qo(x)IP-l _
o x II Qo IIP-l sgn Qo(x) dx - 0

Then Qo(x) must change sign at least n times. Since Qo(x) is a polynomial of
degree :;(n, Qo(x) has n simple roots in (0, I], say Xl' .." x n . By Rolle's
theorem, DQo(x) vanishes at least once between any two zeros of Qo(x) and
thus vanishes in at least n - I points. Continuing this argument and the fact
that DrQo(x) is a polynomial of degree ~(n - r), we see that DrQo(x) has
(n - r) simple roots in (0, 1), say x r1 ,... , x rn _

r
• Obviously Xl < x r1 ,... ,

X n - r < X r • Moreover, we have
n-r

I c 1/1 an I = Xl . X2 ••••• Xn

and

I
r! ar I

n(n - 1) ... (n - r + 1) an = xr1 ... x rn _ r '

so

I r! ar I = n(n - 1) ... (n - r + 1) I an [ x r1 ... x rn _
r

xr1 ... X r I c I
=n(n-I)"'(n-r+l) n-r

Xl ... X n

( lei )> n(n - 1) ... (n - r + 1) .
x n - r +l ... X n

Hence

(1/1 c I) I DrQo(O)I = r! I ar 1/1 c I

> n(n - 1) ... (n - r + 1) ( 1 ) > 1.
X n - r+l ..• X n

From (2), we have

fl r r I Qo(x)IP-l
o (D Qo(O) Qo(x) - cD Qo(x)) II Qo IIP-l sgn Qo(x) dx = O. (3)

Then, using the HOlder's inequality and (3), we obtain

11I r - If1
r I QO(x)IP-l Ic I D Qo(O)I II Qo II - 0 D QO(X) II Qo IIP-l sgn Qo(X) dx

:<. r (fl I Qo(x)I'P-l)q )l/q _ r
"'" II D Qo II 0 II Qo II'P-l)q dx - II D Qo II.
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As IDrQo(O)//1 c I > 1, we would have

II DrQo II > II Qo II·
This contradicts the assumption, which completes the proof of the theorem.

THEOREM 2. The polynomial Qo(x) of Theorem I does not have zeros of
multiplicity r in (0, I),/or 1 < p < 00.

Proof. Suppose there exists Xo E (0, I) such that DiQo(XO) = ° for
i = 0, I, ... , r - 1. Then, using the Holder's inequality, we obtain

f I Qo(x)IP dx = f If' DQo(t) dt rdx
o 0 ~

~ f ((f' I DQo(t)IP dtt P
. I x - Xo II/qr dx

o "'0

< f I x - Xo IP/qdx' f I DQo(x)iPdx
o 0

~ (lIp) f I DQo(x)IP dx.
o

Similarly, we have

for i = 2, 3, ... , r.

Therefore

f I Qo(x)IP dx < (llpr) f I DrQo(x)IP dx.
o 0

Since Qo(x) is a best approximation, this contradicts the equality of
Theorem 1, which proves the theorem.

Finally, by virtue of Theorem 1 and one of the results in [1], we have the
following Characterization Theorem.

THEOREM 3. The polynomial Qo(x) E Po is a best approximation to zero
ifand only if there exist positive numbers .\, IL such that .\ + IL = 1,

and

(1 k I Qo(x)IP-I _
Jo x II Qo liP 1 sgn Qo(X) dx - 0 for k= 1,2,...,r-l,

for k = r, r + 1, ... , n.

(1 I Q (x) Ip-l
,\ 1

0
x k II Qo IIP-I sgn Qo(x) dx + ILk X ... X (k - r + 1)

[

1 I DrQ (X)IP-I
X xk - r 0 sgn DrQ (x) dx = °

o - II DrQo liP 1 0 '
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